1. Hyperbolic Functions

Basic Definitions:

\[\sinh x = \frac{e^x - e^{-x}}{2}\] \[\cosh x = \frac{e^x + e^{-x}}{2}\] \[\tanh x = \frac{\sinh x}{\cosh x} = \frac{e^x - e^{-x}}{e^x + e^{-x}}\]

Inverse Hyperbolic Functions:

\[\sinh^{-1} x = \ln(x + \sqrt{x^2 + 1})\] \[\cosh^{-1} x = \ln(x + \sqrt{x^2 - 1}), x ≥ 1\] \[\tanh^{-1} x = \frac{1}{2}\ln(\frac{1+x}{1-x}), |x| < 1\]

Important Identities:

\[\cosh^2 x - \sinh^2 x = 1\] \[1 - \tanh^2 x = \text{sech}^2 x\]

Graph of \(\sinh(x)\)

The hyperbolic sine function \(\sinh(x)\) takes any real number \(x\) and returns the y-coordinate of the unit hyperbola, aka, maps \(x\) to \(\mathbb{R}\).

Graph of \(\cosh(x)\)

The hyperbolic cosine function \(\cosh(x)\) takes any real number \(x\) and returns the x-coordinate of the unit hyperbola, aka, maps \(x\) to \([1, \infty)\).

Graph of \(\tanh(x)\)

The hyperbolic tangent function \(\tanh(x)\) takes any real number \(x\) and returns the ratio of hyperbolic sine to hyperbolic cosine, aka, maps \(x\) to \((-1, 1)\).

2. Limits

Important Limits:

\[\lim_{x \to 0} \frac{\sin x}{x} = 1\] \[\lim_{x \to 0} \frac{e^x - 1}{x} = 1\] \[\lim_{x \to 0} \frac{\ln(1+x)}{x} = 1\]

L'Hôpital's Rule:

If \[\lim_{x \to a} \frac{f(x)}{g(x)}\] is of form \[\frac{0}{0}\] or \[\frac{\infty}{\infty}\] Then \[\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}\]

3. Function Properties

Even Functions:

\[f(-x) = f(x)\]

Odd Functions:

\[f(-x) = -f(x)\]

Inverse Functions:

  • If y = f(x), then x = f⁻¹(y)
  • f(f⁻¹(x)) = x
  • f⁻¹(f(x)) = x
  • Domain of f⁻¹ = Range of f
  • Range of f⁻¹ = Domain of f

4. Exponential and Logarithmic Properties

Exponential Properties:

\[e^{ln(x)} = x\] \[\ln(e^x) = x\] \[a^x \cdot a^y = a^{x+y}\] \[(a^x)^y = a^{xy}\]

Logarithmic Properties:

\[\ln(xy) = \ln(x) + \ln(y)\] \[\ln(\frac{x}{y}) = \ln(x) - \ln(y)\] \[\ln(x^n) = n\ln(x)\]

5. Continuity

A function f is continuous at a point x₀ if:

  1. \[\lim_{x \to x_0^-} f(x)\] exists
  2. \[\lim_{x \to x_0^+} f(x)\] exists
  3. Both limits equal f(x₀)

6. Trigonometric Identities

\[\sin^2 x + \cos^2 x = 1\] \[\cot x = \frac{\cos x}{\sin x}\] \[\sin(-x) = -\sin(x)\] \[\cos(-x) = \cos(x)\]
\[\sin(x \pm y) = \sin x \cos y \pm \cos x \sin y\] \[\cos(x \pm y) = \cos x \cos y \mp \sin x \sin y\] \[\tan(x \pm y) = \frac{\tan x \pm \tan y}{1 \mp \tan x \tan y}\]
\[\sin(2x) = 2\sin x \cos x\] \[\cos(2x) = \cos^2 x - \sin^2 x\] \[\tan(2x) = \frac{2\tan x}{1 - \tan^2 x}\]

Interactive Graphs

1. Graph of \(\sin(x)\)

The sine function \(\sin(x)\) takes any real number \(x\) and returns the y-coordinate of the unit circle, aka, maps \(x\) to \([-1, 1]\).

2. Graph of \(\tan(x)\)

The tangent function \(\tan(x)\) takes any real number \(x\) and returns the ratio of sine to cosine, aka, maps \(x\) to \(\mathbb{R}\).

3. Graph of \(\tan^{-1}(z)\)

Here, the arctangent function \(\tan^{-1}(z)\) takes any real number \(z\) and returns the angle whose tangent is \(z\), aka, maps \(z\) to \([-\frac{\pi}{2}, \frac{\pi}{2}]\).

4. Composite Graph of \(y(x) = \tan^{-1}(\sin x)\)

Since \(\sin x\) maps \(x\) to \([-1, 1]\) and \(\tan^{-1}(z)\) maps \(z\) to \([-\frac{\pi}{2}, \frac{\pi}{2}]\), the composite function \(y(x) = \tan^{-1}(\sin x)\) maps \(x\) to \([-1, 1]\).

5. Graph of \(y(x) = \ln(x)\)

The natural logarithm function \(\ln(x)\) takes any positive real number \(x\) and returns the power to which \(e\) must be raised to obtain \(x\), aka, maps \(x\) to \((0, \infty)\).

6. Graph of \(y(x) = e^x\)

The exponential function \(e^x\) takes any real number \(x\) and returns the value of \(e\) raised to the power of \(x\), aka, maps \(x\) to \((0, \infty)\).

7. Graph of \(y(x) = \tan(x)\)

The tangent function \(\tan(x)\) takes any real number \(x\) and returns the ratio of sine to cosine, aka, maps \(x\) to \(\mathbb{R}\).