Root Mean Square Velocity (vrms) Calculator

Theoretical Foundation

The root mean square velocity (vrms) is derived from the Maxwell-Boltzmann distribution of molecular velocities in an ideal gas. It represents the square root of the mean squared velocity of gas molecules.

Mathematical Definition:

\[v_{rms} = \sqrt{\frac{1}{N}\sum_{i=1}^{N} v_i^2}\]

For an ideal gas, this simplifies to:

\[v_{rms} = \sqrt{\frac{3RT}{M}}\]

Key Relationships:

\[E_k = \frac{1}{2}mv^2 = \frac{3}{2}kT\] \[PV = nRT = NkT\] Where: \[ \begin{cases} R = 8.314 \text{ J/(mol·K)} & \text{(Gas constant)} \\ T = \text{Temperature in Kelvin (K)} \\ M = \text{Molar mass in kg/mol} \\ k = 1.380649 × 10^{-23} \text{ J/K} & \text{(Boltzmann constant)} \end{cases} \]

Interactive Calculator

T(K) = T(°C) + 273.15
Common gases: H₂ (2.016 g/mol), N₂ (28.014 g/mol), O₂ (31.999 g/mol)